

LA-UR-19-22282

Approved for public release; distribution is unlimited.

Title: Los Alamos National Laboratory Methods for NWAL Measurements by

MC-ICP-MS

Author(s): Wende, Allison Marie

Inglis, Jeremy David

Pollington, Anthony Douglas

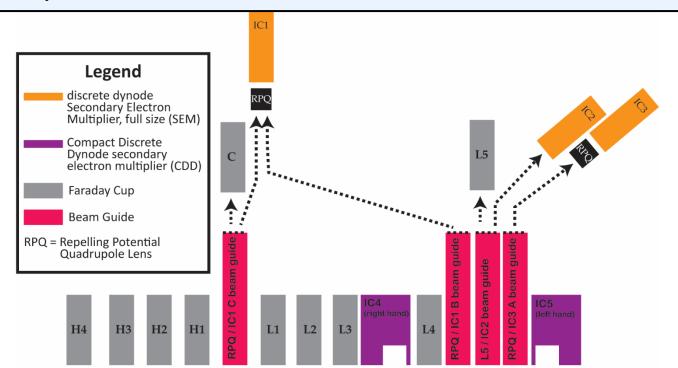
Kinman, William Scott Steiner, Robert Ernest

Intended for: Technology exchange with IAEA analytical lab for mass spectrometry and

facility operations.

Issued: 2019-03-14

Los Alamos National Laboratory Methods for NWAL Measurements by MC-ICP-MS


IAEA Exchange March 18, 2019

Allison Wende, Jeremy Inglis, Anthony Pollington, Will Kinman, Rob Steiner

Analysis of NWAL Swipes

- Thermo Scientific <u>Neptune Plus</u> used to analyze swipe sample fractions
 - Multi-collector ICP-MS with desolvating sample introduction system
- Distinct cup configurations for measuring UxT (traced U) UxI (untraced U), and PuT/PuI (traced and untraced Pu) fractions
- Strategies for correcting instrumental effects
 - Mass bias, gain, abundance sensitivity

Traced U: Instrument Setup

<u>UxT Sequence</u>

U Standard 1

Washes 1-4

U Standard 2

Washes 1-4

UxT Sample 1

Washes 1-4

UxT Sample 2

Washes 1-4

U Standard 1

Washes 1-4

U Standard 2

•

U	Standard	1

(e.g. IRMM 74-1, U500) Mass Bias Corrections

U Standard 2

(e.g IRMM 74-2) ²³³U/²³⁸U similar to samples

Traced Uranium Neptune Plus Cup Configuration L2 H2 L1 H1 C U Samples/QCs 233U 234U 235U 236U 238U **U** Standards 233U 234U 235U 236U 238U

• UxT samples typically traced with 1:1 ratio of ²³³U:²³⁸U

Ion Counter

Faraday

- All U isotopes measured on Faradays
- Typically include standards with ²³³U as bracketing standard and/or QC (Standard 2)
- Exponential mass bias corrections applied using ²³³U/²³⁸U or ²³³U/²³⁵U ratio of Standard 1

Untraced U: Instrument Setup

IC5

233U

233U

Untraced U Neptune Plus Cup Configuration

IC3

234U

234U

<u>Uxl Sequence</u>

U Standard 1

Washes 1-4

U Standard 2

Washes 1-4

U Standard 3

Washes 1-4

Uxl Sample 1

Washes 1-4

Uxl Sample 2

Washes 1-4

U Standard 1

Washes 1-4

U Standard 2

Washes 1-4

Untraced U Samples

U Samples/Standards 2 & 3

U Standard 1

²³⁵U on Faraday or IC

U Standard 1

(e.g. U010, U050, U500, U850) Mass Bias and Gain Corrections

U Standard 2

(e.g. U005-A, U960, U010) U composition similar to samples

U Standard 3

<u>U Standard 3</u>
Gain Correction for ²³⁵U on IC

U samples screened prior to analysis

235U

IC2

235U

- Standards with similar U isotopic compositions selected as QCs (Standard 2)
- Separate Mass Bias and Gain Corrections

L5

235U

IC1 B

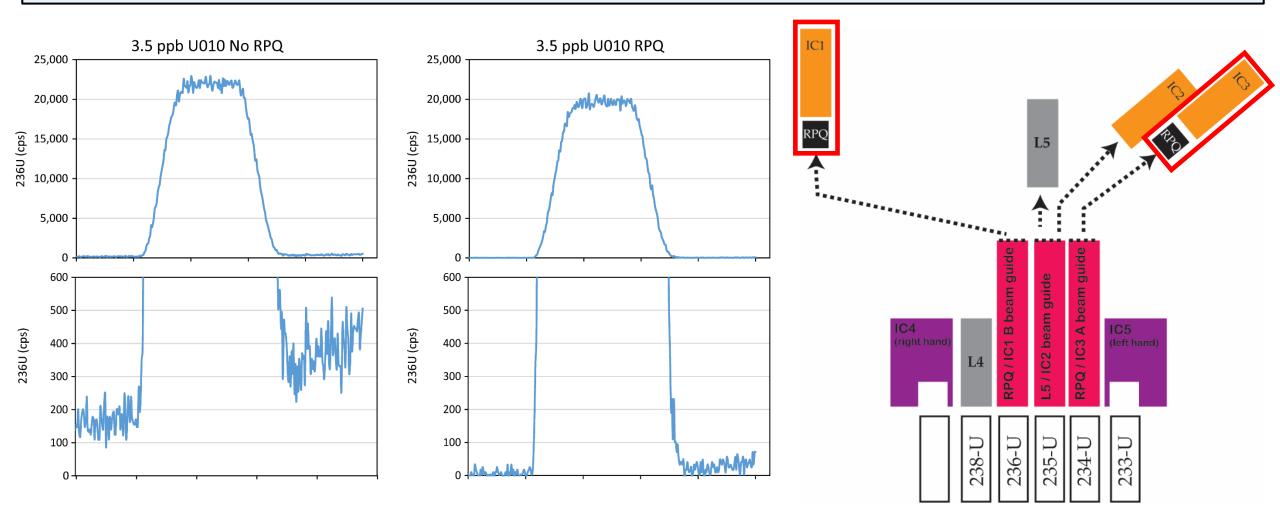
236U

236U

L4

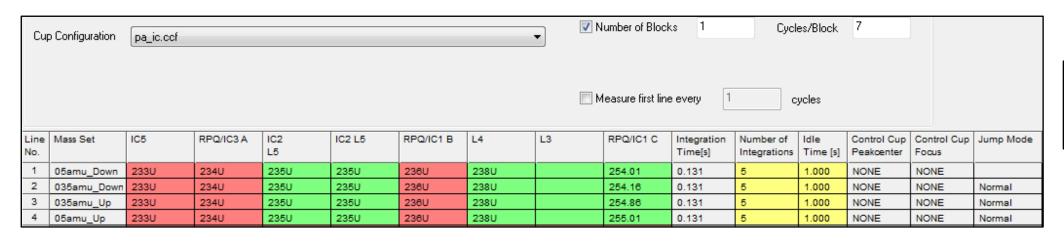
238U

238U


Ion Counter

Faraday

- Exponential MB corrections using ²³⁵U/²³⁸U ratio (faraday-faraday; Standard 1)
- Gain corrections for ion counter measurements using minor isotope ratios (Standard 1) and additional bracketing standard (Standard 3)

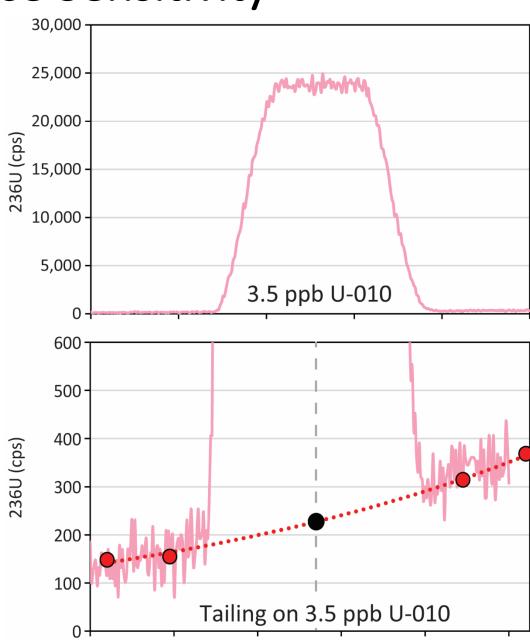

Untraced U: Abundance Sensitivity

- Tailing on ²³⁶U or ²³⁴U managed by RPQs (energy filters)
- RPQs reduce but do not always completely eliminate tailing on minor isotopes. And no RPQ available on IC5
 - Tailing also corrected by 4 point baseline method (when needed)

Untraced U: Abundance Sensitivity

- Baselines measured prior to each U standard and sample in the run
 - Capture any changes in tail magnitude that may result from plasma fluctuations throughout run
- Four baseline points measured to calculate exponential curve
 - 0.5 AMU above and below center mass
 - 0.35 AMU above and below center mass

U Baseline Method Run prior to each U standard/sample


Number of Blocks Cycles/Block Cup Configuration pa ic.ccf IC2 L5 L3 Control Cup | Control Cup | Jump Mode Mass Set RPQ/IC3 A IC2 RPQ/IC1 B Integration Idle L5 No. Time [s] Peakcenter Integrations Main 242.692 254.51 4.194 NONE

U Method

Untraced U: Abundance Sensitivity

U010 236U Baseline Measurements and Tail Calculations						
Cycle	0.50 amu below CM (cps)	0.35 amu below CM (cps)	0.35 amu above CM (cps)	0.50 amu above CM (cps)	Calculated 236 Tail at CM (cps)	
1	146.49	144.97	279.25	354.02	214.05	
2	143.44	155.65	305.19	375.38	224.89	
3	138.86	144.97	294.51	364.70	215.64	
4	157.17	155.65	321.97	367.75	231.99	
5	163.28	163.28	326.55	367.75	237.87	
6	166.33	172.43	352.49	367.75	246.93	
7	123.61	149.55	323.50	384.53	218.98	
Average:					227.19	
STDEV:					12.28	

Counts at four off-peak masses input into Excel growth function to calculate and subtract tailing

Pu Fractions: Instrument Setup

Pu Standard 1

Washes 1-5

Pu Standard 2

Washes 1-5

Pu Sample 1

Washes 1-5

Pu Sample 2

Washes 1-5

Pu Standard 3

Washes 1-5

Pu Standard 1

Washes 1-5

Pu Standard 2

Pu Standard 2

(e.g. CRM 128)
Corrects ²⁴²Pu/²³⁹Pu ratios

Traced/Untraced Pu Neptune Plus Cup Configuration

IC5 IC3 IC2 IC1

Pu Samples/QCs 239Pu 240Pu 241Pu 242Pu

Pu Standards 239Pu 240Pu 241Pu 242Pu

Ion Counter

Faraday

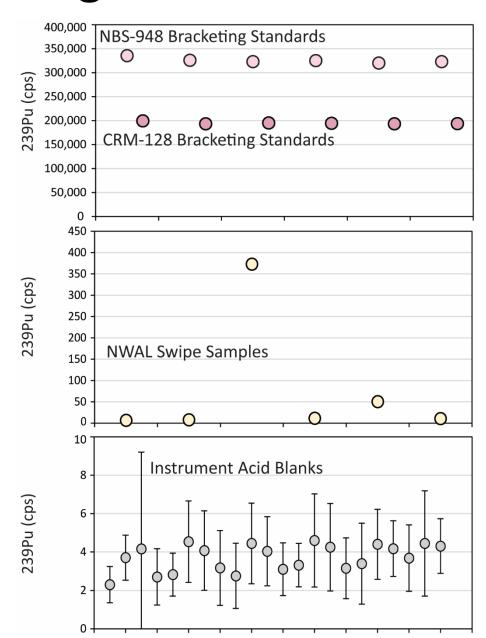
Pu Samples

All Pu isotopes on ICs

Pu Standard 3

(e.g. CRM 137; IRMM 081a)
Pu similar to samples

Pu Standard 1


(e.g. NBS-948/CRM 138) Corrects 240 Pu/ 239 Pu and 241 Pu/ 239 Pu ratios

- Traced Pu fractions spiked with ~6.5 pg ²⁴²Pu
- Pu samples screened prior to analysis
 - Screen for Pu composition, as well as potential interferences (e.g. ²³⁸U, ²⁰⁸Pb, and ¹⁸⁴W)
 - Standards with similar Pu compositions selected as QCs (Standard 3)
- Combined Mass Bias and Gain Corrections
 - Use IC-IC measurements of Standard 1 and Standard 2

Pu Measurement Challenges

- Combined mass bias and gain corrections using IC-IC ratios of Pu standards effective but not ideal
 - Need to run bracketing standards at high enough concentrations to achieve reasonable precision.
 - Samples often have very low Pu contents (< 1 pg) so must also maintain low instrument backgrounds
 - Long washes required to achieve reasonable instrument limits of detection

Isotope Compositions of Pu Bracketing Standards					
	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu		
NBS 948	0.08611	0.000541*			
CRM 128			1.00063		

The Future of Pu Measurements by ICP-MS?

Traced/Untraced Pu Neptune Plus Cup Configuration						
	IC5	IC3	IC2	L5	IC1B	L4
Pu Samples/QCs	239Pu	240Pu	24:	1Pu	242Pu	
U Standard/QC	233U	234U	235U	235U	236U	238U
	236U		238U			

Move towards using U as bracketing standard for Pu samples

Advantages

- Achieve lower Pu instrument blanks with fewer washes
- Better sample precision: ²³⁵U/²³⁸U (Faraday-Faraday) ratio for mass bias and potentially better counting statistics on minor isotope (IC-Faraday) ratios for gain corrections

Concerns

- Abundance sensitivity issues in bracketing U standards (RPQs vs. Baselines?)
- No RPQ on IC5. Baselines with careful standard selection to minimize ²³⁸U tail on ²³⁶U?

NWAL Sample Analysis by MC-ICP-MS: Summary

- UxT measurements: Faraday measurements
 - Mass bias corrections with ²³³U/²³⁸U or ²³³U/²³⁵U (Faraday-Faraday) ratios
- Uxl measurements: combination of ion counters and Faradays
 - Mass bias corrections made with ²³⁵U/²³⁸U ratios (Faraday-Faraday)
 - Gain corrections made using minor U isotope ratios (ion counter-Faraday)
 - Abundance sensitivity improved using RPQs and baseline measurements
- PuT Measurements: Ion counter measurements
 - Combined mass bias and gain corrections using Pu standards
 - Move towards U standards to correct for instrumental effects and to improve precision?